Chapter 7 Quadrilaterals and Other Polygons

Ch 7.1 Angles of Polygons

Polygon Characteristics

Types of Polygons

Angle Measures

Polygon Name	# of Sides	# of Triangles	Sum of interior angle measures
Triangle			
Quadrilateral			
Pentagon			
Hexagon			
n-gon			

Polygon	Interior	Angles
Т	heorem	

$$m \angle 1 + m \angle 2 + ... + m \angle n =$$

Polygon Exterior Angles Theorem

$$m \angle 1 + m \angle 2 + ... + m \angle n =$$

Exercises:

The sum of the measures of the interior angles of a convex polygon is ______. Classify the polygon by the number of sides.

Solve for the value of x in the diagram.

Given is a ______. Solve for x, y, and z.

7.2 Properties of Parallelograms

What is the definition of a parallelogram? _____

Parallelogram Opposite Sides Theorem

Parallelogram
Opposite Angles
Theorem

Exercises

Find _____

Find the values of x and y.

Parallelogram
Consecutive Angles
Theorem

Parallelogram Diagonals Theorem

Exercises

Find _____

Find _____

P	r	^	^	f
г		v	u	

Given: _____

Statements

Reasons

Prove: _____

Find the coordinates of the intersection of the diagonals of PLMNO with vertices _____

Three vertices of ¬WXYZ are ______. Compute the coordinates of vertex Y.

7.3 Proving That a Quadrilateral Is a Parallelogram

How do we identify if a quadrilateral IS a parallelogram? Angles? Side lengths?

If-Diagram (If)	Hypothesis	Conclusion
P S		
A D C		
A D C		
A D C		
A D C		

Determine if quadrilateral is parallelogram 1) 2) Given: KM and JL bisect each other. Prove: JKLM is a parallelogram. Statements Reasons

Exercises

Possible Approach #1:

Possible Approach #2:

7.4 Properties of Special Parallelograms

Special Parallelograms

Create a Venn Diagram

Rhombus Diagonals Theorem Rhombus Opposite Angles Theorem Rectangle Diagonals Theorem

Problem:

TVWX is a rhombus.

TV =

m∠VTZ =

Problem:

Show that _____

Problem:

Determine whether □ABCD

with vertices _____,

and _____ is a rectangle, a rhombus, or a square.

7.5 Properties of Trapezoids and Kites

Trapezoid Problem: A quadrilateral with _____ Determine if QRST is a trapezoid. Isosceles Trapezoid Q(_____), R(_____), A trapezoid with _____ S(____), T(____) Possible approaches: **Isosceles Trapezoid Base Angles Theorem Isosceles Trapezoid Base Angles Converse Isosceles Trapezoid Diagonals Theorem** Midsegment of a Trapezoid: A segment that _____ **Trapezoid Midsegment Theorem** Midsegment =

Problem:

Calculate the length of the midsegment of trapezoid STUV.

S(_____), T(_____),

U(_____), V(_____)

3)

Kite - A quadrilateral that

Kite Diagonals Theorem

Kite Opposite Angles Theorem

Problems:

In kite PQRS, m∠PQR = _____, and m∠TRS = _____

Find each measure.

m∠QRT = _____ m∠QPS = ____ m∠PSR = ____

Find m∠F = _____

JN = ____ and NL = ____ Find KM =____